Complex synchronization patterns in the human connectome network
نویسندگان
چکیده
A major challenge in neuroscience is posed by the need for relating the emerging dynamical features of brain activity with the underlying modular structure of neural connections, hierarchically organized throughout several scales. The spontaneous emergence of coherence and synchronization across such scales is crucial to neural function, while its anomalies often relate to pathological conditions. Here we provide a numerical study of synchronization dynamics in the human connectome network. Our purpose is to provide a detailed characterization of the recently uncovered broad dynamic regime, interposed between order and disorder, which stems from the hierarchical modular organization of the human connectome. In this regime –similar in essence to a Griffiths phase– synchronization dynamics are trapped within metastable attractors of local coherence. Here we explore the role of noise, as an effective description of external perturbations, and discuss how its presence accounts for the ability of the system to escape intermittently from such attractors and explore complex dynamic repertoires of locally coherent states, in analogy with experimentally recorded patterns of cerebral activity.
منابع مشابه
Frustrated hierarchical synchronization and emergent complexity in the human connectome network
The spontaneous emergence of coherent behavior through synchronization plays a key role in neural function, and its anomalies often lie at the basis of pathologies. Here we employ a parsimonious (mesoscopic) approach to study analytically and computationally the synchronization (Kuramoto) dynamics on the actual human-brain connectome network. We elucidate the existence of a so-far-uncovered int...
متن کاملSynchronization for Complex Dynamic Networks with State and Coupling Time-Delays
This paper is concerned with the problem of synchronization for complex dynamic networks with state and coupling time-delays. Therefore, larger class and more complicated complex dynamic networks can be considered for the synchronization problem. Based on the Lyapunov-Krasovskii functional, a delay-independent criterion is obtained and formulated in the form of linear matrix inequalities (LMIs)...
متن کاملSynchronization analysis of complex dynamical networks with hybrid coupling with application to Chua’s circuit
Complex dynamic networks have been considered by researchers for their applications in modeling and analyzing many engineering issues. These networks are composed of interconnected nodes and exhibit complex behaviors that are resulted from interactions between these nodes. Synchronization, which is the concept of coordinated behavior between nodes, is the most interested behavior in these netwo...
متن کاملIdentifying Relationships in Functional and Structural Connectome Data Using a Hypergraph Learning Method
The brain connectome provides an unprecedented degree of information about the organization of neuronal network architecture, both at a regional level, as well as regarding the entire brain network. Over the last several years the neuroimaging community has made tremendous advancements in the analysis of structural connectomes derived from white matter fiber tractography or functional connectom...
متن کاملIdentifying Connectome Module Patterns via New Balanced Multi-graph Normalized Cut
Computational tools for the analysis of complex biological networks are lacking in human connectome research. Especially, how to discover the brain network patterns shared by a group of subjects is a challenging computational neuroscience problem. Although some single graph clustering methods can be extended to solve the multi-graph cases, the discovered network patterns are often imbalanced, e...
متن کامل